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Sampling allows the transform of an analog signal into a digital one. We describe this transform from both time and frequency

perspectives.

1 Time perspective

Definition 1.1 (Sampling)

Sampling is an application from F(R,K) to F(Z,K) which maps an analog signal x to the digital signal (x(tn))n∈Z,

where (tn)n∈Z is an increasing sequence of real numbers.

Periodic sampling with period Ts > 0 is the sampling corresponding to sequence tn = nTs , i.e. it maps an analog signal

x to the digital signal (x(nTs))n∈Z. In this case, the sampling frequency is the number fs =
1

Ts
and the sampling

impulse is the number ωs = 2πfs =
2π

Ts
.

In this lecture, we exclusively focus on periodic sampling.

Definition 1.2 (Dirac comb)

The Dirac comb with period T0 > 0 is the distribution pT0 =
∑
n∈Z

δnT0 , i.e.

∀t ∈ R pT0(t) =
+∞∑

n=−∞
δ(t − nT0)

0

pT0(t)

t
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1 TIME PERSPECTIVE

Definition 1.3 (Sampled signal)

The sampled signal with sampling period Ts of an analog signal x is the analog signal xs obtained by multiplying x by

the Dirac comb pTs :

∀t ∈ R xs(t) = x(t)pTs (t) =
+∞∑

n=−∞
x(nTs)δ(t − nTs)

×

pTs (t)

x(t) xs(t)

0

xs(t)

−5Ts −4Ts −3Ts −2Ts −Ts Ts 2Ts 3Ts 4Ts 5Ts

t

Remarks:

I WARNING: As an infinite sum of shifted and delayed analog Dirac delta functions, the sampled signal is not a digital

signal, but an analog one. We must apply on this signal the definitions and properties of analog signals.

I To obtain the digital signal x from the sampled signal xs , we have to locally integrate the sampled signal, i.e.

∀n ∈ Z ∀ε ∈]0,Ts [ x [n] =

∫ n+ε

n−ε
xs(t)dt

I With sampling, we can deduce the definition and properties of digital convolution from analog convolution of sampled

signals. Indeed, let two sampled signals xs(t) =
+∞∑

n=−∞
x [n]δ(t − nTs) and ys(t) =

+∞∑
n=−∞

y [n]δ(t − nTs), and let

zs(t) = (xs ∗ ys)(t) =
+∞∑

n=−∞
z [n]δ(t − nTs)

Then by linearity of the analog convolution, for any t ∈ R,

zs(t) =

((
+∞∑

n=−∞
x [n]δnTs

)
∗

(
+∞∑

m=−∞
y [m]δmTs

))
(t) =

+∞∑
n=−∞

+∞∑
m=−∞

x [n]y [m] (δnTs ∗ δmTs ) (t)

=
+∞∑

n=−∞

+∞∑
m=−∞

x [n]y [m]δ (t − (n +m)Ts) =
+∞∑

n=−∞

(
+∞∑

k=−∞

x [k]y [n − k]

)
δ(t − nTs)
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2 FREQUENCY PERSPECTIVE

which justifies the definition of digital convolution.

2 Frequency perspective

Now we study the effects of the Dirac comb on the spectrum of the sampled signal. We have seen in the lecture about Fourier

transform that the spectrum X of a periodic signal x with period T0 whose Fourier coefficients are (cn(x))n∈Z is given by:

∀ω ∈ R X (ω) = 2π
+∞∑

n=−∞
cn(x)δ(ω − nω0)

Proposition 2.1 (Poisson summation formula)

The Fourier transform PT0 of the Dirac comb pT0(t) =
+∞∑

n=−∞
δ(t − nT0) is given by

∀ω ∈ R PT0(ω) =
2π

T0

+∞∑
n=−∞

δ(ω − nω0) = ω0

+∞∑
n=−∞

δ(ω − nω0)

0

PT0(ω)

ω

−3ω0 −2ω0 −ω0 ω0 2ω0 3ω0

2π
T0

PROOF : The Dirac comb pT0 is a periodic signal with period T0. Denote (cn(pT0))n∈Z its Fourier coefficients. We have:

∀n ∈ Z cn(pT0) =
1

T0

∫ T0
2

− T0
2

pT0(t)e
−inω0tdt =

1

T0

∫ T0
2

− T0
2

δ(t)e−inω0tdt =
1

T0
e−inω00 =

1

T0

because δ0 is the only element of the infinite sum in the interval

[
−T0

2
,
T0

2

]
. Since the Dirac comb is periodic, its Fourier

transform is written:

∀ω ∈ R PT0(ω) = 2π
+∞∑

n=−∞
cn(pT0)δ(ω − nω0) =

2π

T0

+∞∑
n=−∞

δ(ω − nω0)

Proposition 2.2

Let an analog signal x and its Fourier transform X . The Fourier transform Xs of the sampled signal xs(t) = x(t)pTs (t) is

given by:

∀ω ∈ R Xs(ω) =
1

Ts

+∞∑
n=−∞

X (ω − nωs)
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2 FREQUENCY PERSPECTIVE

PROOF : Using the Fourier transform of a time product and Poisson summation formula, we get:

Xs =
1

2π
(X ∗ PTs ) =

1

2π

(
X ∗ 2π

Ts

+∞∑
n=−∞

δnωs

)
=

1

Ts

+∞∑
n=−∞

X ∗ δnωs =
1

Ts

+∞∑
n=−∞

τnωs (X )

which yields the result.

0

Xs(ω)

ω

−2ωs −ωs ωs 2ωs

Spectral effect of sampling

0

Xs(ω)

ω

−5ωs −4ωs −3ωs −2ωs −ωs ωs 2ωs 3ωs 4ωs 5ωs

Sampling overlap

Remark: Graphically, multiplying an analog signal by a Dirac comb boils down to duplicate its spectrum, place a copy in nωs

for every n ∈ Z, and divide the modulus of the spectrum by Ts . It is clear from their definition that the larger the sampling

period the smaller the sampling frequency, and vice versa. Thereby, if the sampling period is too large, i.e. the sampling

frequency is too small, copies of the original spectrum may intersect, resulting in spectral overlap or aliasing. The main

issue with such an overlap is a loss of information about the spectrum of the original analog signal, which might prevent its

perfect reconstruction. The following theorem states a sufficient condition to avoid this overlap.

Theorem 2.3 (Shannon-Nyquist sampling theorem)

Let an analog frequency-limited signal x whose spectrum X is zero outside the interval [−ωmax,ωmax]. To prevent any

spectral overlap, it is sufficient to sample signal x with a sampling frequency at least twice larger than the maximum

frequency in X , i.e. ωs > 2ωmax.

PROOF : The previous remark and figures graphically justify this theorem.

Remarks:

I This sampling theorem provides a sufficient but not necessary condition to prevent spectral overlap. Indeed, some

narrowband spectra can be sampled with a frequency smaller than 2ωmax while avoiding overlap. For instance, the

following spectrum can be sampled with frequency ωs = ωmax:
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2 FREQUENCY PERSPECTIVE

0

X (ω)

−ωmax −ωmax

2
ωmax

2
ωmax

1

ω

I Note that the inequality is strict in this theorem. Sampling with frequency ωs = 2ωmax may not allow perfect

reconstruction of the analog signal. For example, if we sample the sine signal x(t) = sin(ω0t) with frequency

ωs = 2ω0, we get, for any n ∈ Z, x [n] = sin(ω0nTs) = sin(nπ) = 0, which yields the same exact result as the

sampling of the zero function.

I We have seen in the lecture about frequency design that the range of sound frequencies audible by the human ear is

typically between 16 Hz and 16 kHz. Many digital audio file formats sample audio signals at the sampling frequency of

44.1 kHz. The previous theorem shows that this sampling frequency prevents most of the loss of information in audio

signals heard by humans.

I We have seen in the lecture about the time-frequency duality that time-limited signals, which we usually deal with in

practice, cannot be frequency-limited as well, thus spectral aliasing is inevitable. To prevent such an overlap, we can

preprocess the signal by using a lowpass filter, also known as an anti-aliasing filter, to remove the high frequencies

causing overlap.
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